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Swell-induced surface instability has been observed experimentally in rubbers and gels. Here we 
present a theoretical model that predicts the critical condition along with a characteristic 
wavelength for swell-induced surface instability in substrate-confined hydrogel layers. The effect 
of surface tension is found to be critical in suppressing short-wavelength modes of instability, 10 

while the substrate confinement suppresses long-wavelength modes. Together, an intermediate 
wavelength is selected at a critical swelling ratio for the onset of surface instability. Both the 
critical swelling ratio and the characteristic wavelength depend on the initial thickness of the 
hydrogel layer as well as other material properties of the hydrogel. It is found that the hydrogel 
layer becomes increasingly stable as the initial layer thickness decreases. A critical thickness is 15 

predicted, below which the hydrogel layer swells homogeneously and remains stable at the 
equilibrium state. 

1. Introduction 
Subjected to mechanical compression, the surface of a rubber 
block becomes unstable at a critical strain, beyond which 20 

sharp folds or creases appear on the surface.1,2 Similar surface 
instability has been observed in swelling rubber vulcanizates3 
and polymer gels.4-7 Such instability may pose a fundamental 
limit on load-carrying capacity of rubber or on the degree of 
swelling for gels. On the other hand, the physics of surface 25 

instability may be harnessed in the design of responsive 
“smart” surfaces for novel applications.8,9 In both cases, 
theoretical understanding on the critical condition of surface 
instability as well as subsequent surface pattern evolution is 
essential. 30 

 By considering a half-space of an incompressible neo-
Hooken elastic material under mechanical compression, Biot10  
predicted that the surface becomes unstable at a critical level 
of compression. Later, it was found that Biot’s prediction 
considerably overestimated the critical strain for surface 35 

creasing in rubber blocks deformed by bending.1 A recent 
paper by Hong et al.11 presented an alternative analysis of 
surface ceasing in rubber based on an energetic consideration 
and suggested that creasing is a different mode of surface 
instability in contrast with Biot’s periodic surface wave 40 

analysis. Several theoretical models have also been proposed 
for swelling induced surface instability in gels.4, 11-14 At least 
two questions remain open for gels: (1) What is the critical 
condition for swelling induced surface instability? (2) What 
determines the characteristic size of surface patterns formed 45 

beyond the critical point? 
 For the first question, a critical osmotic pressure was 
suggested based on a composite beam model.4 Based on their 
experiments with a hydrogel layer on a rigid substrate, 
Trujillo et al.6 suggested a critical linear compressive strain of 50 

~33%, or a critical swelling ratio of ~2. Hong et al.11 

predicted a critical swelling ratio of ~2.4. Experimentally, a 
wide range of critical swelling ratios were observed for 
different gel systems, from around 2 to 3.7.3, 5, 6 In a previous 
study,14 we performed a linear perturbation analysis for 55 

surface instability of substrate-confined hydrogel layers and 
predicted a range of critical swelling ratios from below 1.5 to 
3.4, depending on the material properties of the hydrogel 
system. However, two key effects were not considered. First, 
depending on the kinetics of swelling, the critical swelling 60 

ratio for onset of surface instability can potentially be lower 
due to inhomogeneous transient state of swelling. Second, the 
effect of surface energy or surface tension tends to stabilize 
the flat surface, which could lead to larger critical swelling 
ratios, especially for very thin layers. 65 

 For the second question, several experimental studies have 
reported characteristic wavelengths proportional to the initial 
thickness of the gel.4, 6-8 As discussed in the previous study,14 
while the substrate confinement indeed suppresses long-
wavelength modes of the surface instability, the confinement 70 

effect alone does not lead to a finite characteristic wavelength 
since the short-wavelength modes are unaffected by the 
substrate. Two possible mechanisms may be important in 
addressing this question. For one, the characteristic 
wavelength may be dynamically determined by the swelling 75 

kinetics, similar to wrinkling of an elastic thin film on a 
viscoelastic substrate.15-17 Second, the short-wavelength 
modes of surface instability may be suppressed by surface 
tension of the hydrogel, which together with the substrate 
confinement effect would result in a finite wavelength for the 80 

surface instability. 
 The present study focuses on the effects of surface tension 
on both the critical condition and the characteristic 
wavelength. Along with a separate study on the effects of 
swelling kinetics, we aim to establish a vigorous theoretical 85 

understanding on swell-induced surface instability of 
substrate-confined hydrogels. The remainder of this article is  



 

2  |  Journal Name, [year], [vol], 00–00 This journal is © The Royal Society of Chemistry [year] 

(a)  

(b)  

(c)  
Fig. 1 Schematic illustrations of substrate-confined hydrogel layers. (a) 
Homogeneous swelling; (b) Onset of swell-induced surface instability; (c) 5 

formation of surface creases. 

organized as follows. Section 2 presents an analytical solution 
for homogeneous swelling of a hydrogel layer on a rigid 
substrate, based on a specific material model of neutral 
polymer hydrogels. A linear perturbation analysis is 10 

performed in Section 3 to predict onset of surface instability 
for a homogeneously swollen hydrogel layer. The effect of 
surface tension is taken into account through the boundary 
condition. The results are discussed in Section 4. In addition 
to the critical swelling ratio and the characteristic wavelength, 15 

a critical thickness is predicted for thin hydrogel layers, 
whose surface becomes increasingly stable as the initial layer 
thickness decreases. 

2. Homogeneous swelling of a hydrogel layer 
Consider homogeneous swelling of a hydrogel layer attached 20 

to a rigid substrate (Fig. 1a), where a Cartesian coordinate 
system is set up such that x2 = 0 at the hydrogel/substrate 
interface. At the dry state, the thickness of the hydrogel layer 
is h0, while the other two dimensions are assumed to be 
infinite. Confined by the substrate, the hydrogel layer swells 25 

only in the thickness direction with a homogeneous swelling 
ratio, 1/ 0 >= hhhλ , where h is the thickness of the swollen 
hydrogel. The homogeneous swelling ratio can be determined 
by minimizing the total free energy of the hydrogel system.14 
Using a particular form of the Flory-Huggins free energy 30 

function for the hydrogel,18-20 the homogeneous swelling ratio 
(λh) is obtained as a function of the chemical potential ( μ̂ ) of 
the external solvent by Eq. (2.1): 
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where the material properties of the hydrogel are represented 35 

by two dimensionless parameters (Nv and χ). The external 
chemical potential in general is a function of the temperature 
(T) and pressure (p). Assuming an ideal gas phase (p < p0) and 
an incompressible liquid phase (p > p0) for the solvent, the 
chemical potential is given by 40 
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where p0 is the equilibrium vapor pressure of the solvent, v is 
the volume per solvent molecule, and kB is the Boltzmann 
constant. 
 At a constant temperature (T), Eq. (2.1) predicts that the 45 

hydrogel layer swells increasingly as the chemical potential 
increases until it reaches an equilibrium value at the 
equilibrium vapor pressure of the solvent (i.e., 0pp =  and 

0ˆ =μ ). In experiments, however, the equilibrium swelling 
ratio may be reached by immersing the hydrogel in an 50 

aqueous solution for a sufficiently long time, while the 
transient state of swelling may be inhomogeneous. In either 
case, the equilibrium swelling ratio is a function of 
temperature, depending on three dimensionless parameters, 

)/(00 Tkvpp B= , Nv, and χ. The first parameter depends on the 55 

solvent only. For water at 25ºC, 2.3~0p kPa, v ~ 3×10-29 m3, 
and thus 5

0 103.2~ −×p , which is relatively small and may be 
approximately taken to be zero. The second parameter 
depends on the polymer network of the hydrogel, with N 
being the effective number of polymer chains per unit volume 60 

of the hydrogel at the dry state. The polymer network has an 
initial shear modulus, G0 = NkBT, with typical values from 0.1 
kPa to 100 kPa.6 Thus, the value of Nv ranges from 10-6 to 10-

3. The third parameter, χ, is a dimensionless quantity 
characterizing the interaction between the solvent molecules 65 

and the polymer, which has been measured and tabulated for 
many gels.18 The value of χ also differentiates a good solvent 
(χ < 0.5) from a poor solvent. Taking 5

0 103.2 −×=p ,   Nv = 
10-3, and χ = 0.4, we obtain from Eq. (2.1) the equilibrium 
swelling ratio, λh = 5.58. The equilibrium swelling ratio 70 

decreases with increasing values of Nv or χ. 
 Upon swelling, the confinement by the substrate induces a 
compressive stress in the hydrogel layer. As in the previous 
studies,14,20 the nominal stresses are obtained as a function of 
the swelling ratio: 75 

 ( ) hhBh pTNksss λλ −−−=== 12
3311

 (2.3) 

and ps −=22 . The true (Cauchy) stresses at the swollen state 
are related to the nominal stresses as 

( ) pTNks hhBhh −−−=== λλλσσ /1/3311  and ps −== 2222σ . Thus, 
the pressure inside the hydrogel is 80 
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It is noted that the internal pressure of the hydrogel is higher 
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than the external pressure (p) of the solvent, analogous to the 
osmosis phenomenon (i.e., the hydrogel is hypertonic and the 
external solvent is hypotonic). 
 As the surface of the hydrogel layer is assumed to remain 
flat during the homogeneous swelling (Fig. 1a), the presence 5 

of a surface tension or surface energy does not have any effect 
on the one-dimensional (1-D) homogeneous swelling of the 
hydrogel. We note that this is not the case for un-constrained 
three-dimensional (3-D) swelling of a hydrogel particle in a 
solvent, for which surface tension does have an effect as the 10 

surface area increases during swelling, especially for small-
scale hydrogel particles.21 In the present study, we show that, 
despite its no-effect on the homogeneous swelling, surface 
tension plays a critical role in swell-induced surface 
instability of substrate-confined hydrogel layers. 15 

3. Linear perturbation analysis 
Previously we have performed a linear perturbation analysis 
of the homogeneous solution to predict swell-induced surface 
instability without considering the effect of surface tension.14 
Following the same procedure, we present here a linear 20 

perturbation analysis with the effect of surface tension. As 
illustarted in Fig. 1, once the surface becomes unstable, it may 
evolve from a smooth undulation (Fig. 1b) to form localized 
foldings and surface creases (Fig. 1c). 
 For a linear stability analysis, a two-dimensional 25 

perturbation is assumed with small displacements from the 
homogeneously swollen state, namely 

 ( )2111 , xxuu =  and ( )2122 , xxuu = . (3.1) 

Such a perturbation leads to an inhomogeneous deformation 
of the hydrogel along with re-distribution of the solvent 30 

concentration inside the gel (Fig. 1b). As a result, the stress 
field becomes inhomogeneous as well. To the leading order of 
the perturbation, the nominal stresses in the hydrogel are 
obtained as follows: 

 ( )[ ] iJiJhhiJBiJ pHHFTNks −−−≈ εξλ~  (3.2) 35 

where 
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In the above equations, F~

 

is the deformation gradient tensor 

relative to the dry state, ijke  is the permutation tensor, and the 
repeated indices implies summation. The lowercase indices (i, 
j, k) refer to the coordinates at the swollen state, while the 
uppercase indices (J, K, L) refer to the dry state. Apparently, 45 

the linearized stress-strain relationship for the swollen 
hydrogel layer, Eq. (3.2), is anisotropic, a result due to the 
anisotropic deformation of the polymer network during 1-D 
homogeneous swelling. 
 For the hydrogel to maintain mechanical equilibrium, the 50 

stress field must satisfy the equilibrium equations, namely 
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In terms of the perturbation displacements, the equilibrium 
equations become 55 
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 In addition, the stress field must satisfy the boundary 
conditions. Assume a liquid-like surface tension (γ) for the 
hydrogel. The perturbed surface has a curvature, 2

12
2 / xu ∂∂≈κ , 60 

to the first-order approximation. By the classical Young-
Laplace equation, the normal stress at the surface of the 
hydrogel layer is balanced by the capillary pressure due to 
surface tension and the external pressure, namely, 

 hx
x
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∂
∂

+−= 22
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2
2

22 at   γ  (3.11) 65 

where 0hh hλ=  is the thickness of the hydrogel layer at the 
swollen state. On the other hand, the shear stress is zero on 
the surface, i.e., 012 =s . At the hydrogel/substrate interface, 
we assume perfect bonding with zero displacements, i.e., 

021 == uu  at x2 = 0. 70 

 By the method of Fourier transform we solve the 
equilibrium equations (3.9)-(3.10) and obtain that 
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where ( )kxu ;ˆ 21  and ( )kxu ;ˆ 22  are the Fourier transforms of the 75 

displacements, ( )211 , xxu  and ( )212 , xxu , with respect to x1, and k 
is the Fourier wave number. The four eigenvalues are obtained 
from the equilibrium equations as 

 
h
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where )/()1( 2
hhhhh ξλλξλβ ++= . Correspondingly, we have 80 

the eigenvectors, 



 

4  |  Journal Name, [year], [vol], 00–00 This journal is © The Royal Society of Chemistry [year] 

 
⎥
⎦

⎤
⎢
⎣

⎡
−−

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

ββλλ iiiiuuuu

uuuu

hh

1111
)4(

2
)3(

2
)2(

2
)1(

2

)4(
1

)3(
1

)2(
1

)1(
1  (3.15) 

We note that, for each Fourier component with a specific 
wave number k, the perturbation displacement is periodic in 
the x1 direction, but varies exponentially in the x2 direction for 
each eigen mode, similar to Biot’s analysis for surface 5 

instability of a half-space rubber-like material under 
mechanical compression.10 
 Next applying the boundary conditions, we obtain that 
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where the coefficient matrix is given by 10 
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with )/( TNkpp B=  and )/( TNkL Bγ= . The critical condition 
for swell-induced surface instability of the hydrogel layer is 
then obtained by setting the determinant of the matrix D to be 
zero, namely 15 
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 We postpone the discussions on the results of the linear 
perturbation analysis till next section. Here we note that the 
ratio between the surface tension (γ) and the bulk shear 
modulus ( TNkG B=0 ) of the polymer network defines an 20 

intrinsic length scale (L). A similar length scale appeared in a 
critical condition that predicts the maximum pressure for 
cavitation in hydrogels.22 Alternatively, a length scale can be 
defined with respect to the molecular volume of solvent, i.e., 

)/(' TkvL Bγ= , which is independent of the polymer network. 25 

Take the surface tension of the hydrogel to be similar to that 
of water.22 At the room temperature, 073.0~γ  N/m and v ~ 
3×10-29 m3, we have 53.0~'L

 nm, while the length L can vary 
over several orders of magnitude (from nanometers to 
micrometers) depending on the value of Nv. It turns out that 30 

the same length scale (L) could result in a size-dependent 
swelling ratio for nanoscale hydrogel particles.21 In the 
present study, we show that the presence of such a length 
scale leads to a thickness-dependent critical condition for 
swell-induced surface instability of substrate-confined 35 

hydrogel layers. 

 (a)  

(b)  
Fig. 2 (a) Critical swelling ratio and (b) critical chemical potential, versus 
the perturbation wavelength for swell-induced surface instability of 40 

substrate-confined hydrogel layers with Nv = 10-3, χ = 0.4, and L = 0.53 
μm. The thick dashed lines show the results without the effect of surface 
tension, and the thin dashed line in (a) indicates the homogeneous 
swelling ratio at equilibrium. 

4. Results and discussions 45 

The linear perturbation analysis predicts a critical condition, 
Eq. (3.18), for onset of swell-induced surface instability of 
substrate-confined hydrogel layers. As plotted in Fig 2a, the 
predicted critical swelling ratio ( cλ ) is a function of the 
normalized perturbation wavelength, )/(2 0khS π= , depending 50 

on the initial layer thickness (h0) as well as the material 
properties (Nv, χ, and 0p ) of the hydrogel. Figure 2b plots the 
corresponding critical chemical potential ( cμ ), which is 
related to the critical swelling ratio by Eq. (2.1). For these 
calculations, we assume a specific hydrogel system with Nv = 55 

10-3, χ = 0.4, 5
0 103.2 −×=p , and 

53.0=L µm. For comparison, 
the thick dashed lines in Fig. 2 show the results from the 
previous analysis with no surface effect, which are 
independent of the layer thickness. As expected, the surface 
tension tends to stabilize short-wavelength perturbations, 60 

leading to increasingly larger critical swelling ratio as the 
wavelength decreases. Together with the effect of substrate 
confinement, which suppresses the long-wavelength 
perturbations, the critical swelling ratio has a minimum ( *

cλ ) 
at an intermediate wavelength ( *S ); both *

cλ  and *S

 

depend on  65 
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(a)  

(b)  
Fig. 3 (a) The minimum critical swelling ratio and (b) the corresponding 
characteristic wavelength, versus the initial thickness of the substrate-
confined hydrogel layers with Nv = 10-3 and χ = 0.4. The lower dashed 5 

line in (a) shows the thickness-independent critical swelling ratio without 
the effect of surface tension, and the upper dashed line indicates the 
homogeneous swelling ratio at equilibrium. The dashed line in (b) shows 
the power-law scaling of the characteristic wavelength, 9.0

00
* ~ hhS . 

the initial thickness (h0) of the hydrogel layer. 10 

 Figure 3a plots the minimum critical swelling ratio ( *
cλ ) as 

a function of the initial thickness (h0) of the hydrogel layer, 
and Fig. 3b plots the corresponding wavelength ( 0

*hS ). To 
illustrate the effect of surface tension, the results are shown 
for different values of the length scale L. As a dimensionless 15 

quantity, the minimum critical swelling ratio depends on the 
ratio between the two lengths, h0/L. For a relatively thick 
hydrogel layer, the surface tension has negligible effect, and 
thus the critical swelling ratio approaches the previous 
prediction (the lower dashed line), which is independent of the 20 

layer thickness. As the layer thickness decreases, the effect of 
surface tension becomes increasingly important, and the 
critical swelling ratio increases until it reaches the equilibrium 
homogeneous swelling ratio (the upper dashed line) of the 
hydrogel layer at a critical thickness (hc). For a thinner 25 

hydrogel layer (h0 < hc), the homogeneous swelling is stable 
up to the equilibrium chemical potential ( 0ˆ =μ ). 
Corresponding to the minimum critical swelling ratio, the 
characteristic wavelength ( 0

*hS ) decreases monotonically as 
the layer thickness decreases (Fig. 3b), in qualitative 30 

agreement with experimental observations.4, 6-8 However, it is 

 
Fig. 4 The critical thickness of substrate-confined hydrogel layers, 
predicted as a function of Nv for various values of χ. The length scale L’ 
is assumed to be a constant (L’ = 0.53 nm). 35 

found that the characteristic wavelength as predicted here is 
not exactly proportional to the layer thickness. Instead, it 
appears to approximately follow a power-law scaling, 

 αα LhhS −∝ 1
00

*  (4.1) 

with a positive exponent α , over a wide range of the layer 40 

thickness. As shown by the dashed line in Fig. 3b, 1.0≈α

 

for 
Nv = 10-3 and χ = 0.4. The positive exponent (α ) suggests 
that the characteristic wavelength increases as the surface 
tension of the hydrogel increases. Remarkably, the exponent 
is found to be insensitive to the other material properties of 45 

the hydrogel, with nearly identical value of α  for different Nv 
and χ. 
 It is of interest to note that, while the surface tension has no 
effect on homogeneous swelling of a substrate-confined 
hydrogel layer, it plays a critical role in stabilizing thin 50 

hydrogel layers. In particular, the critical thickness (hc) for a 
stable hydrogel layer is linearly proportional to the length 
scale L, which in turn is proportional to the surface tension γ. 
Similar critical thickness exists for surface instability of 
epitaxial crystal thin films.23 Figure 4 plots the critical 55 

thickness (hc) as a function of Nv for different values of χ, 
assuming a constant value for L’. The critical thickness 
depends on Nv through two competing factors. First, for a 
constant surface tension (γ) and solvent molecular volume (v), 
because the length scale L decreases with increasing Nv, the 60 

critical thickness tends to decrease as well. On the other hand, 
since the polymer network of the hydrogel becomes 
increasingly stiff as Nv increases, the degree of swelling 
decreases. With less swelling, the hydrogel layer is more 
stable, and the critical thickness tends to increase. 65 

Consequently, the ratio between the critical thickness and the 
length scale, hc/L, increases monotonically with increasing 
Nv. When Nv is relatively small, the effect of surface tension 
dominates, and the critical thickness decreases with increasing 
Nv. The trend is reversed as the elasticity of polymer network 70 

becomes significant with relatively large Nv. On the other 
hand, the dependence of the critical thickness on χ is simpler. 
As χ increases, the degree of swelling decreases and the 
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critical thickness increases. For each χ, there exists a 
maximum value for Nv, beyond which the critical thickness is 
essentially infinity. This again is attributed to limited degree 
of swelling, with which the hydrogel layer of any thickness 
would remain stable at the equilibrium state. Therefore, the 5 

critical condition for swell-induced surface instability of the 
substrate-confined hydrogel layer is largely determined by the 
three dimensionless parameters: Lh /0 , Nv , and χ. As shown 
in Fig. 4, for typical values of Nv and χ, the critical thickness 
ranges between 100 nm and 1 µm. 10 

 As noted in the previous study,14 the present stability 
analysis assumes a quasi-statically controlled swelling 
process, where the hydrogel layer swells homogeneously until 
the onset of surface instability. As such, the effect of swelling 
kinetics has been ignored. In experiments, when a hydrogel 15 

layer is immersed in a solvent, the transient state of swelling 
is typically inhomogeneous and the stability condition 
depends on the kinetics.4,24 Three scenarios may occur. First, 
the hydrogel layer remains stable and swells homogeneously 
up to the equilibrium state. This was observed for gels when 20 

the degree of swelling is relatively small.4 Second, the 
hydrogel layer becomes unstable and develops surface creases 
during the transient swelling process. Eventually as the 
hydrogel layer reaches the equilibrium state, the surface 
creases disappear, and the equilibrium state of homogeneous 25 

swelling is stable.4 Third, the surface creases develop and 
evolve during the transient process, and remain at the 
equilibrium state,6 suggesting that the homogeneous swelling 
is unstable at the equilibrium state. The critical condition for 
surface instability as developed in the present study predicts 30 

whether the equilibrium state of homogeneous swelling is 
stable, but does not predict the onset of surface instability 
during the transient process. It is speculated that the critical 
swelling ratio for surface instability could be considerably 
lower for inhomogeneous swelling at the transient state. The 35 

detailed analysis on the effect of swelling kinetics is left for a 
separate study. 
 Another interesting point to note is the effect of 
temperature on swell-induced surface instability of hydrogels. 
Within the present model, we see several possible effects that 40 

depend on temperature. First, in Eq. (2.1), the homogeneous 
swelling ratio depends on temperature through the normalized 
vapor pressure, )/(00 Tkvpp B= , where p0 itself is a function 
of temperature. In addition, the other material properties (N, 
χ, and v) may all depend on temperature. Experimentally it 45 

has been observed that polymer gels may undergo continuous 
or discontinuous volume phase transition as the temperature 
changes,24 suggesting possible changes in the structure of the 
polymer network as well as the interaction between the 
polymer and the solvent molecules. In the stability analysis, as 50 

the surface tension may depend on temperature, the predicted 
critical swelling ratio, the characteristic wavelength, and the 
critical layer thickness all depend on temperature. It is thus 
possible that a hydrogel layer is stable at one temperature but 
becomes unstable at a different temperature. In addition, it is 55 

well known that the kinetics of mass transport and swelling is 
typically sensitive to temperature. Therefore, the effect of 
temperature on swell-induced surface instability of hydrogels 

is in general complicated with convolution of multiple effects 
on the material parameters and physical processes. 60 

5. Concluding remarks 
This paper presents a theoretical analysis on swell-induced 
surface instability of substrate-confined hydrogel layers. In 
particular, the effect of surface tension is highlighted in 
comparison with a previous study14 that considered the effect 65 

of substrate confinement alone. With both surface tension and 
substrate confinement, we show that the stability of a 
hydrogel layer depends on its initial thickness. A critical 
thickness is thus predicted, which is proportional to the 
surface tension and depends on the other material parameters 70 

of the hydrogel. The onset of surface instability is predicted at 
a characteristic wavelength with the minimum critical 
swelling ratio. An approximate power-law scaling for the 
characteristic wavelength is suggested. The minimum critical 
swelling ratio decreases as the layer thickness increases, 75 

depending on the ratio between the two length scales ( Lh /0 ) 
and approaching a constant at relatively large thickness. 
 Finally we note that the linear perturbation analysis in the 
present study assumes a smooth surface perturbation onto a 
homogeneously swollen hydrogel layer at the onset of surface 80 

instability. This is in the same spirit as Biot’s analysis on 
surface instability of a half-space rubber under mechanical 
compression,10 but different from the energetic analysis by 
Hong et al.11 As shown by numerical simulations in our 
previous study,14 the smooth surface perturbation can 85 

subsequently evolve to form localized features such as 
grooves and creases (Fig. 1c), as a result of nonlinear post-
instability evolution. More studies, both theoretically and 
experimentally, are needed to further elucidate the nonlinear 
process of swell-induced surface evolution as well as the 90 

relationship between the two types of surface instability 
patterns. 
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